

HEC Hydrogen Sessions

Hydrogen Fuel Cell Electric Trucks and Fueling Infrastructure May 7, 2021, 12:00 poor

May 7, 2021, 12:00 noon

Brad Bradshaw President, Velerity President, Hydrogen Energy Center brad@velerity.com

Hydrogen Energy Center

HEC is a professional association focused on accelerating the hydrogen as an enabling solution for renewable energy

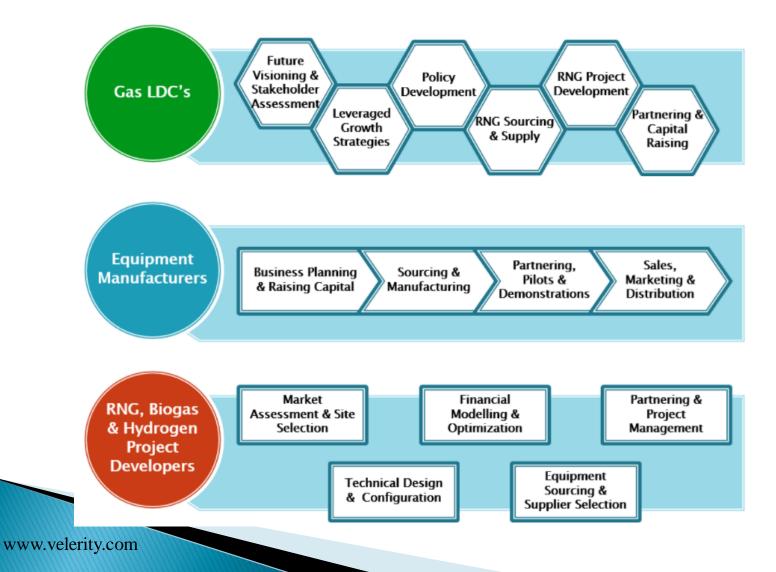
HEC provides public forums, conducts research and implements projects focused on accelerating the clean energy future

Consider supporting this important effort by becoming a member:

- Influence the course of renewable hydrogen energy technology and policy.
- Be a part of projects that really build hydrogen solutions.
- Have full access to white papers, technical reports, and meeting minutes from our projects and from other organizations.

Immerse yourself in the hydrogen "goings-on" by connecting with
 developments & networking with people who are collectively driving the

hydronen "bus".


Upcoming Hydrogen Sessions

- May 14, 2021 100% Hydrogen Pipelines
- May 21, 2021 Power Production with Hydrogen
- May 28, 2021 Building a Global Trade in Hydrogen
 - June 4, 2021 Electrolysis and Water Splitting
 - Hydrogen Production with Carbon Separation
 - June 18, 2021 Wind to Hydrogen

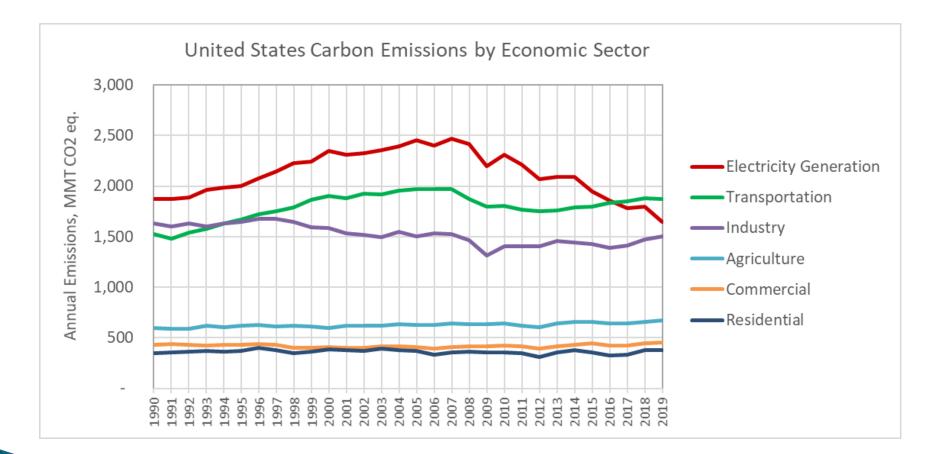
June 11, 2021

Velerity Services

4

Velerity - Illustrative Clients

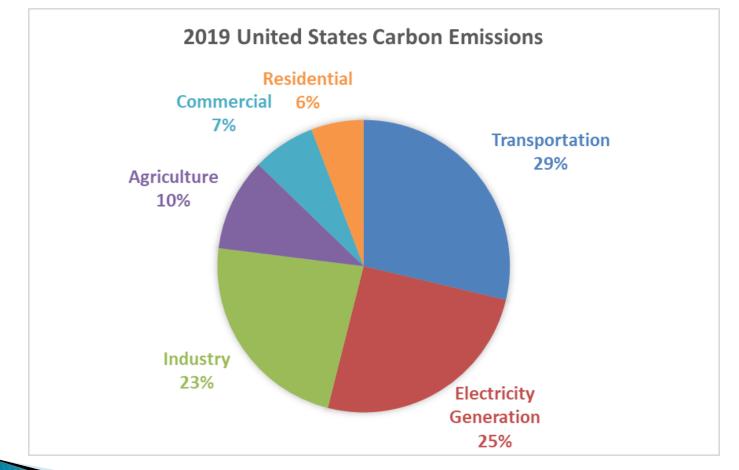
CINERGY _®	ABB	Sierra Pacific	National Grid
ConEdison, inc.	CONOCO	NSTAR	elpaso
Trans Canada In business to deliver™	conectiv	Duke Energy.	Dominion
Reliant Energy™	Promigas	Allegheny	FPL
Beacon POWER	DQE	Colonial Pipeline Company	
www.velerity.com	Tokyo Electric Power Company	Sofe Hydrogen, LLC Shh Its quiet power	



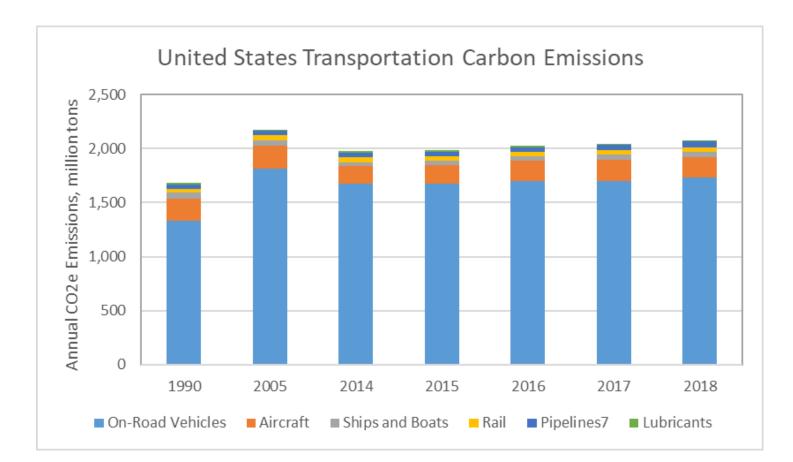
The move to zero carbon trucking is underway and complex

- Carbon initiatives turning to transportation and building heat energy
- Transportation emissions have been increasing
- California introduced zero emission truck requirements beginning in 2024
- Manufacturers need to develop zero emissions trucks
 - Key question: battery electric or fuel cell electric?
- Many considerations and trade-offs to consider:
 - Weight
 - Fuel cost
 - Fuel availability
 - Refueling time
 - Range
 - Safety
 - Truck cost

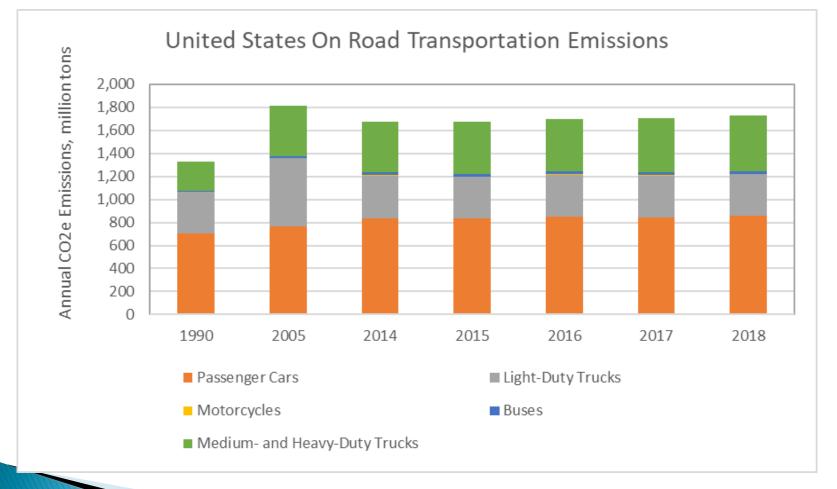
Electric sector emissions have gone down while transportation emission have increased in recent


years

Source: Environmental Protection Agency, U.S. Greenhouse Gas Inventory Data Explorer (cfpub.epa.gov/ghgdata/inventoryexplorer/index.html)


Transportation is now the dominant source of carbon emissions in the United States

Source: Environmental Protection Agency, U.S. Greenhouse Gas Inventory Data Explorer (cfpub.epa.gov/ghgdata/inventoryexplorer/index.html)


Transportation emissions are dominated by onroad vehicles

Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2018 (EPA 2020)

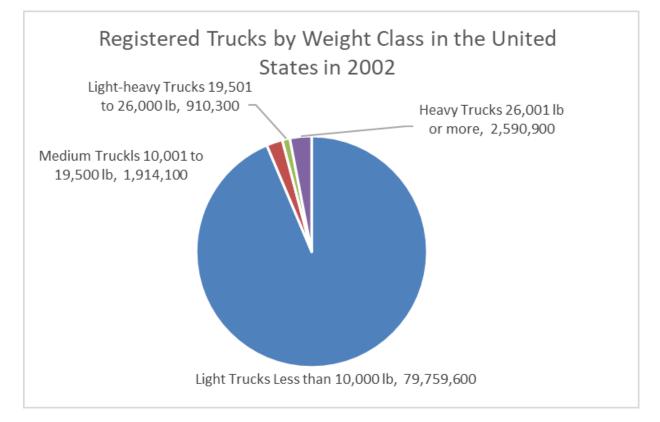
Within on-road vehicles, one half of emissions are light, medium and heavy duty trucks

Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2018 (EPA 2020)

California is the key driver for truckers to begin integrating zero carbon trucks into their fleets

- In June, California proposed its Advanced Clean Truck (ACT) standard. The ACT standard requires incrementally higher adoption rates of on-road zeroemission vehicles from 2024 through 2040, in order to achieve carbon neutrality.
- Beginning in 2024, 3% of Class 2 and 3, 7% of Class 4 through 8 trucks, and 3% of Class 7 and 8 tractors purchased in California must be ZEVs. By 2030, half of Classes 4–6 and 30% of Classes 7 and 8 sales must be ZEVs. By 2045, all new vehicles sold in the state would require they be ZEVs.
- In August, CARB adopted a new ruling to lower NOx emissions for onhighway vehicles. Current CARB NOx limits are 0.2 grams per brake horsepower-hour (g/bhp-hr).
- The incremental reductions for the California state ruling plan to require a further 75% reduction in 2024 to a limit of 0.05 g/bhp-hr and another 90% reduction by 2027 to 0.02 g/bhp-hr.

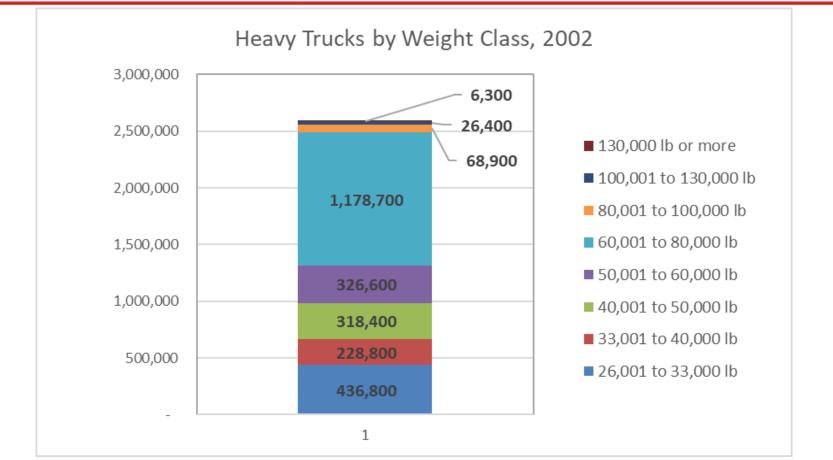
Source: https://www.fleetowner.com/running-green/emissions/article/21146100/meeting-carb-emissions-regulations-will-require-more-fleet-involvement



There are many types of trucks on the road, so it helps to have some definitons

Table 1: Vehicle weight classes and categories				
Gross Vehicle Weight Rating (lbs)	Federal Highway Ac	US Census Bureau		
	Vehicle Class	GVWR Category	VIUS Classes	
<6,000	Class 1: <6,000 lbs	Light Duty <10,000 lbs	Light Duty <10,000 lbs	
10,000	Class 2: <6,001-10,000 lbs			
14,000	Class 3: <10,001-14,000 lbs	Medium Duty 10,001–26,000 lbs	Medium Duty 10,001–19,500 lbs	
16,000	Class 4: <14,001-16,000 lbs			
19,500	Class 5: <16,001-19,500 lbs			
26,000	Class 6: <19,501-26,000 lbs		Light Heavy Duty 19,001–26,000 lbs	
33,000	Class 7: <26,001-33,000 lbs	Heavy Duty >26,001 lbs	Heavy Duty >26,001 lbs	
>33,000	Class 8: > 33,001 lbs			
Source	Alternative Fuels Data Center www.afdc.energy.gov/data/10	380	·	

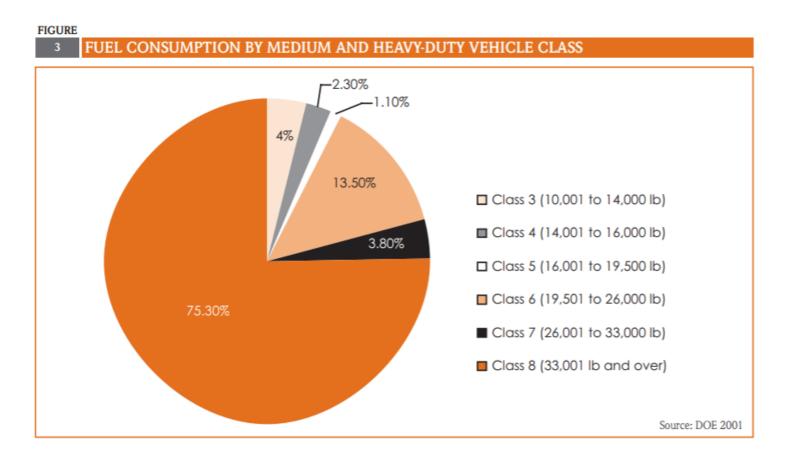
Number of trucks by weight class



1992, 1997: U.S. Census Bureau, 1997 Economic Census: Vehicle Inventory and Use Survey: United States, EC97TV-US (Washington, DC: 1999).

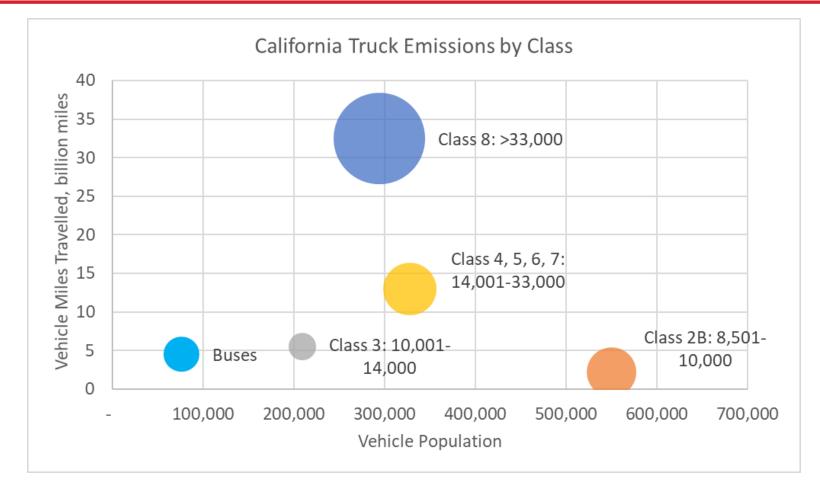
2002: U.S. Census Bureau, 2002 Economic Census: Vehicle Inventory and Use Survey: United States, EC02TV-US (Washington, DC: 2004).

Number of heavy trucks in the United States



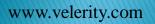
1992, 1997: U.S. Census Bureau, 1997 Economic Census: Vehicle Inventory and Use Survey: United States, EC97TV-US (Washington, DC: 1999).

2002: U.S. Census Bureau, 2002 Economic Census: Vehicle Inventory and Use Survey: United States, EC02TV-US (Washington, DC: 2004).


Fuel usage by weight class

Source: https://www.nescaum.org/documents/heavy-duty-truck-ghg_report_final-200910.pdf

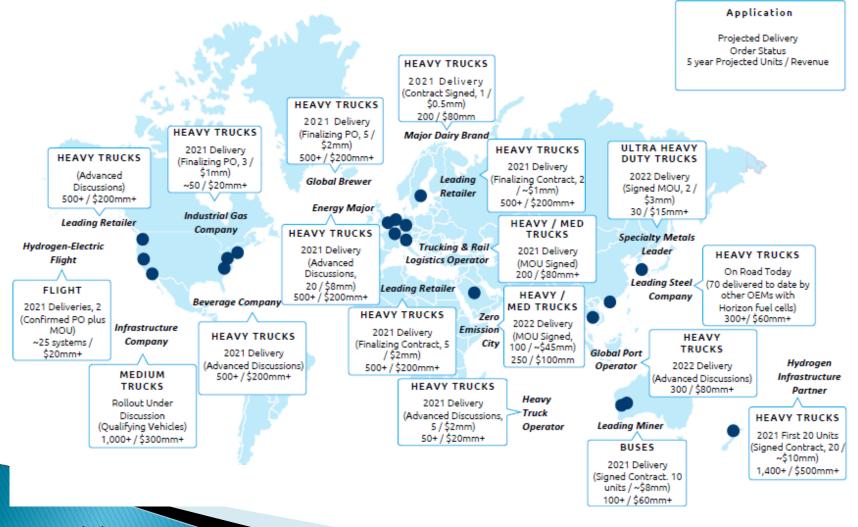
Truck emissions in California by class of truck


CalHEAT Roadmap CaFCP MD & HD FCET Action Plan

United States emissions of combination trucks

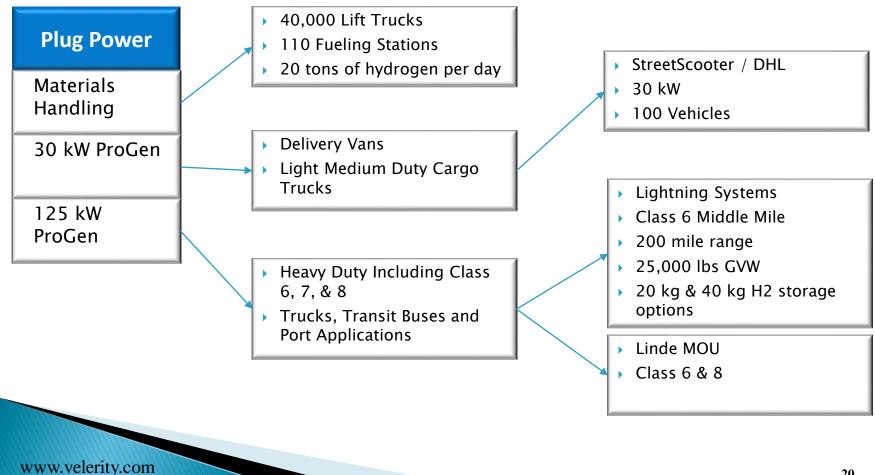
Combination Trucks	2019
Vehicle Miles Driven, millions	175,305
Registered Vehicles	2,925,210
Average Miles Driven per Vehicle	59,929
Fuel Consumed, thousand gallons	28,986,515
Average Mileage	6.0
Average Fuel Consumption per vehicle, gallons	9,909
CO2 Emissions, million tons	386.48

Source: US DOT



Hyzon Motors has made significant progress

- Truck and Fuel Cell System Sales by end of 2020
 - Heavy TruckLight Truck350
 - City Bus 5
- Building out Rochester, NY plant designed for assembling 10,000 vehicles per year
- Building out Illinois Plant for Fuel Cell Manufacturing
- Hiringa, New Zealand
 - Quantity 1,500 over 5 years
 GVW 58 tonnes
 Range 260 kilometers
 Manufacture Netherlands
 Fueling Hiringa to build out stations
 - 8 by 2022
 - 24 by 2025
 - 95% market coverage in New Zealand
 - 100 stations by 2030



Hyzon has an aggressive order book

Plug Power is aggressively entering the truck business, expanding beyond lift trucks

Plug Power Fueling

- Plans to build 5 green hydrogen stations across the United States with a capacity of 100 tons per day
 - 2 stations by 2022
 - All 5 by 2024
- 50% green hydrogen by 2024
- Agreements in place with renewable energy suppliers
 - Apex Clean Energy
 - Brookfield Renewable Partners 10 TPD
- Announcement on 120 MW electrolyzer for Niagara, NY
 - Equivalent to producing ~50 TPD
- Other locations include Pennsylvania and Texas
- Fueling strategy is cryogenic production at source, cryogenic distribution, and cryogenic storage onsite

Ballard Power

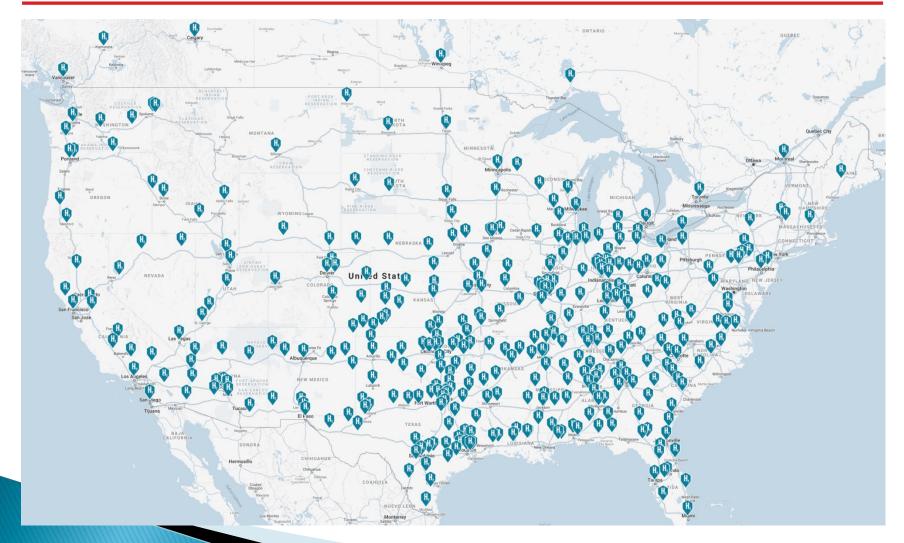
 Current deplo 	yments		
• 1,000 fuel ce	ell electric buses		
 2,200 comm 	ercial trucks		
DongFeng Spe	ecial Vehicle Co. Ltd.		
 Logistics – ci 	ty deliveries, box van truc	cks	
 Gross Vehicle 	e Weight	7.5 ton	
• Range		205 miles	
 Fuel Cell Pow 	/er	30 kW	
 Location 		Shanghai, China	
 Payload 		3.2 tons	
AZETEC – Alberta Zero Emission Truck Electrification Collaboration Project			
 Quantity 		2	
 Gross Vehicle 	e Weight	64 tonnes	
 Vehicle 		B-Train tractor trailers	
• Range		430 miles	
 Fuel Cell Pow 	/er	3X70 kW = 210 kW/vehicle	
Anglo America	an, South Africa		
Ultra Class h	eavy duty mining truck		
Fuel Coll Pow	ver	8X100 kW = 800 kW	
www.velerity.com			

Hyundai

- Switzerland
 - Delivered 10 Xcient FCE trucks to Switzerland in October, 2020
 - Order of 50 complete by the end of 2020
 - 1,600 by 2025
 - Fuel Cell Power
 Tanks
 Storage
 Range
 Fill up time
 2X95 kW = 190 kW
 7 tanks
 32.09 kg
 8 20 minutes
- Fueling
 - Agreement with H2 Energy
 - Jointly build fueling stations across Switzerland for cars and trucks
 - Plan to source hydrogen from hydropower

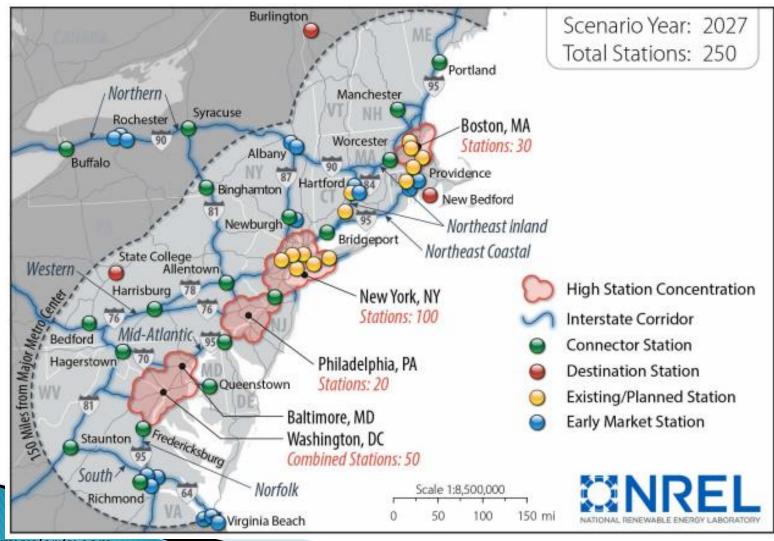
Fueling Strategies

- Hyzon Motors
 - 2021: 95% On-site customer supply, 5% existing stations
 - 2021-2024: Hyzon created capacity for 25%, 75% on-site and existing stations
 - After 2024: Hyzon Network 50%, 3rd party capacity 50%
- Plug Power
 - Liquid hydrogen production from renewable sources
 - Distributed and stored on fueling site in liquid form
 - Partnerships with Apex, Brookfield and Linde
 - Acquired Giner for electrolysis
- Nikola
 - Sourcing inexpensive electricity where available
 - Arizona Public Service quoted at 2.7 cents/kWh
 - Transporting hydrogen in liquid or gaseous form where needed
 - Plans to build stations, current estimate at \$16 million per station and targeting \$10 million per station buildout
 - Bundling cost of truck, maintenance and fuel for customers in a 7 year lease and 1 million miles
 - Nikola, IVECO and OGE to build 124 mile pipeline for distributing hydrogen to fueling stations
 - Nikola plans a network of 700 hydrogen stations across the U.S. and Canada by 2028



Fueling Strategies

- Daimler
 - Liquid on board storage
- Air Liquid
 - Liquid hydrogen production at central facilities and distributed to fueling depots
 - Distribution from fueling depots in gaseous form to hydrogen filling stations



Nikola Motor planned hydrogen refueling stations

2027 Northeast Hydrogen Station Deployment Plan - H2USA

Battery Weight and Cost Challenges for 18 Wheelers

32,000 lbs

48,000 lbs

80,000 lbs

Diesel

- 18 wheeler "day cab"
- Payload
- GVW
- Battery Electric
 - 500 mile range @ 2 kWh/mile = 1,000 kWh
 - 80% draw down limit on battery implies 1,250 kWh requirement
 - Battery plus pack weight at 14 lbs/kWh = 17,500 pounds
 - Payload = 48,000 lbs 17,500 lbs = 30,500 lbs
- FCE Truck
 - Additional weight of tanks, etc. is approximately 4,000 pounds heavier than diesel
 - Payload = 48,000 lbs 4,000 lbs = 44,000 lbs
- Battery Cost
 - 1,250 kWh @ \$150 per kWh (cells plus pack) = \$187,500

Fuel Cost

Diesel	
 Cost per gallon 	\$2.89
 Miles per year 	85,000
 Efficiency 	6 miles per gallon
 Annual fuel cost 	\$40,942/year
FCE Truck	
 Cost per kilogram 	\$4
 Miles per year 	85,000
 Efficiency 	7.5 miles per kg
 Annual Fuel Cost 	\$45,333
Battery Electric Truck	
 Cost of electricity 	\$0.12/kWh
 Miles per year 	85,000
 Efficiency 	2 kWh/mile
Annual cost	\$20,400